skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Denton, Peter B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Direct detection is a powerful means of searching for particle physics evidence of dark matter (DM) heavier than about a GeV with đť’Ş(kiloton) volume, low-threshold detectors. In many scenarios, some fraction of the DM may be boosted to large velocities enhancing and generally modifying possible detection signatures. We investigate the scenario where 100% of the DM is boosted at the Earth due to new attractive long-range forces. This leads to two main improvements in detection capabilities: (1) the large boost allows for detectable signatures of DM well below a GeV at large-volume neutrino detectors, such as DUNE, Super-K, Hyper-K, and JUNO, as possible DM detectors, and (2) the flux at the Earth’s surface is enhanced by a focusing effect. In addition, the model leads to a significant anisotropy in the signal with the DM flowing dominantly vertically at the Earth’s surface instead of the typical approximately isotropic DM signal. We develop the theory behind this model and also calculate realistic constraints using a detailed GENIE simulation of the signal inside detectors. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop. 
    more » « less
  3. Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential. 
    more » « less